Cluster Computing Analysis Based on Beowulf Architecture

Purnawansyah Purnawansyah, Ramdan Sastra


The need for computing speed in data processing is in high demand
indicated by the increasing data processing in many companies.
Aviation companies, for instance, show the growing number of
passengers daily. The data processing for a big number of customers
requires supercomputer technology at the cost of exponential fund.
Therefore, the technology able to process big data with low cost is
necessary. This research has improved a cluster computer which can
process data with a big capacity processing that is generally cannot
be processed using one computer. Cluster computer is built using
Beowulf cluster architecture using Linux Debian operating system
and SSH, NFS, MPI library and GANGLIA services. The result of
this research is a cluster computer prototype which is able to process
38.000x38.000 matrix calculation data. In the first testing, the
computer was able to work for a maximum of 30.000x30.000 matrix
calculation whereas cluster computer can process up to
38.000x38.000 matrix size. This result indicates that the designed
cluster computer is successful to calculate big data with a low
computer specification. The further improvement can be applied in a
more complicated computer calculation process and bigger data.


Cluster Beowulf; MPI; Parallel Computing;

Full Text:



G. Widyaputra. “Peracangan cluster linux komputasi paralel octave”. Universitas Negeri Gadjah mada. Yogyakarta, 2008.

I. H. Syifullah, W. Djuriatno, M. Aswin. “Implementasi pemrosesan paralel pada permainan catur di cluster Beowulf”. Univeristas Brawijaya. Malang, 2014.

A. Igumenov dan J. ‘Zilinskas. “Electrical Energy Aware Parallel Computing with MPI and CUDA”. Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2013.

M. Z. Aliyansyah, M Shidiq, M. Aswin. “Komputasi paralel integral definitif rangkap tiga dengan metode monte carlo di cluster Beowulf”. Universitas Brawijaya, Malang, 2003.

Y. Yao, J. Chang, dan K. Xia. “A Case of Parallel EEG Data Processing Upon a Beowulf Cluster”. International Conference on Parallel and Distributed Systems, 2009.

R. Satra, W. A. Kusuma, dan H. Sukoco. “Accelerating Computation of DNA Multiple Sequence Alignment in Distributed Environment”. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2014.

H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, dan B. Chapman. “High performance computing using MPI and OpenMP on multi-core parallel systems. Parallel Computing”. ELSEVIER, USA, 2011.

R. Hempel dan D. W. Walker. “The emergence of the MPI message passing standard for parallel computing”. Computer Standards & Interfaces. ELSEVIER, 1999.

YC. Chou, S. S. Nestinger, H. H. Cheng. “Ch MPI: Interpretive Parallel Computing in C”. IEEE, 2010.

T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, dan R. Thakur. MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared memor. Springer-Verlag, 2013.



  • There are currently no refbacks.

Copyright (c) 2016 International Journal of Computing and Informatics (IJCANDI)

International Journal of Computing and Informatics (eISSN: 2502-2334)
Organized by Universitas Mulawarman, Universiti Malaysia Sabah, Universitas Muslim Indonesia
Published by Universitas Mulawarman 
W :
E  : or

Creative Commons License
IJCANDI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats